Periweaning Failure-to-Thrive Syndrome

Terri O’Sullivan
APV Conference June 6-8, 2012
Shanghai, China

Presentation Outline
• PFTS introduction and background
• PFTS clinical presentation
• Hypotheses
• Diagnostic investigations
• Prevalence survey and awareness campaign
• Future research
• Questions and discussion
Emerging Disease...

World Health Organization

http://www.who.int/topics/emerging_diseases/en/

"An emerging disease is one that has appeared in a population for the first time, or that may have existed previously but is increasing in incidence or geographic range"

PFTS - Background

• PFTS considered an emerging/re-emerging clinical syndrome
• First reported case: Canadian 100 sow farrow-to-finish farm (Gauvreau & Harding, 2008)
• Subsequent reports of PFTS cases
 • Canada and USA 2009 to present (Moeser et al., 2012; Huang et al., 2011)
 • Spain (Segales et al., 2012)
 • Field reports

PFTS - Background

• Increased concern in Canada and USA
• Treatment and control strategies implemented have been unrewarding
• IPVS 2010 PFTS working group
 • Post-weaning catabolic/wasting syndrome
• North American collaborative research group
 • Prevalence unknown
 • Etiology and pathogenesis undetermined
PFTS - Clinical Presentation

- Characterized clinically
- Normal pigs at weaning
- Clinical condition develops
 - Within 60-72 hours post weaning
 - Anorexia, weight loss
 - Chomping, licking
 - Progresses to debilitation

PFTS - Clinical Presentation

- Variable morbidity
- High case fatality
- Poor to no response to therapies/interventions
- November to May

2011 Questions....

Unknown

- Case definition
- Etiology, pathogenesis
- Prevalence of PFTS in North America
- Prevalence of clinical signs being observed
 - What is the most common clinical sign?
- Proportionate mortality due to PFTS
- Economic significance
- On-farm risk factors
PFTS - Case Definition

“PFTS is characterized clinically by the **progressive debilitation of weanling (nursery) pigs in the absence of** discernible and detrimental infectious, nutritional, managerial, or environmental factors that can explain the clinical syndrome”

PFTS - Case Definition cont...

- At weaning, affected pigs are of **average to above average body weight**
- neither affected pigs nor their cohorts show evidence of residual illnesses from the suckling phase
- **Within 7 days of weaning, affected pigs are anorexic and lethargic**

PFTS - Case Definition cont...

- Deteriorate and within 2–3 weeks of weaning demonstrate marked muscle weakness and loss of body condition
- Some affected pigs in all affected farms show repetitive oral behavior such as **licking, chewing or chomping**
- In affected farms, batch morbidity and mortality varies over time, but case fatality is high

Hypotheses....

Hemagglutinating Encephalomyelitis Virus (HEV)
(Rossow, 2011 Leman Conference)
- Increase in number of HEV positive pigs and tissues
- Histopathology
 - Peripheral neuritis, rhinitis, gastritis
 - +/- presence clinical signs of failure-to-thrive
- Increased detection sensitivity of PCR??
- Research ongoing....

Hypotheses....

Vitamin D (Henry et al., 2011 Leman Conference)
- PFTS affected pigs
 - Poorly mineralized ribs
 - Micro fractures on histopathology
- Vitamin D25-hydroxycholecalciferol
 - 25(OH)D below normal range for age group
 - Normal = 25-30ng/ml
- Supplemented piglets at processing with Vit D
 - Achieved Vit D levels in normal range
 - Increased weaning weights
- Research ongoing....
Hypotheses....

On-farm risk factors
• Diet/rations
 • Milk/whey sensitivity
• Gastritis lesions observed in many cases
 • IBD in canine, milk allergy in children

Other infectious agent
• +/- Porcine cytomegalovirus (PCMV)
• +/- Unknown agent

Other Metabolic condition

PFTS - Diagnostic Investigations

PFTS - Gross Lesions
• Empty gastrointestinal tract
• Thymic atrophy
• Bronchopneumonia

<table>
<thead>
<tr>
<th>Lesions</th>
<th>Sick (%)</th>
<th>Healthy (%)</th>
<th>Control (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thymic Atrophy</td>
<td>15/17*</td>
<td>0/7</td>
<td>0/6</td>
</tr>
<tr>
<td>(88.2)</td>
<td>(0)</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td>Broncho-pneumonia</td>
<td>7/18</td>
<td>0/7</td>
<td>0/8</td>
</tr>
<tr>
<td>(38.9)</td>
<td>(0)</td>
<td>(0)</td>
<td></td>
</tr>
</tbody>
</table>

* The findings in the thymus of one pig was not recorded
PFTS - Microscopic Lesions

- Superficial lymphocytic fundic gastritis
- Atrophic enteritis
- Superficial colitis
- Chronic active rhinitis
- Mild meningoencephalitis
- Thymic atrophy

Slide courtesy: Dr. Y Huang

<table>
<thead>
<tr>
<th>Group</th>
<th># fundic gastritis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sick</td>
<td>16/16* (100)</td>
</tr>
<tr>
<td>Healthy</td>
<td>0/6* (0)</td>
</tr>
<tr>
<td>Control</td>
<td>0/8 (0)</td>
</tr>
</tbody>
</table>

* Funds of 2 sick and 1 healthy pigs were not available

Gastritis - frequent observation

- Gastric lymphocytic periganglionitis
- Subjectively more severe in sick pigs

Gastritis with bacteria negative for Helicobacter sp.
Slide courtesy Dr. J Delay
Meningioencephalitis

<table>
<thead>
<tr>
<th>Group</th>
<th># of meningioencephalitis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sick</td>
<td>6/13 (46)</td>
</tr>
<tr>
<td>Healthy</td>
<td>0/4 (0)</td>
</tr>
<tr>
<td>Control</td>
<td>0/8 (0)</td>
</tr>
</tbody>
</table>

- Significance?
- Mild
- Chomping – neurological sign??
- Found in “normal pigs” in subsequent investigations?
- Neurological exams – nystagmus in sick pigs

PFTS - Testing for bacterial pathogens

<table>
<thead>
<tr>
<th>Pathogens</th>
<th>Sample</th>
<th>Assays</th>
<th># positive/# tested (positive%)</th>
<th>Sick</th>
<th>Healthy</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella</td>
<td>Colon, ileum</td>
<td>Culture</td>
<td>0/18 (0)</td>
<td>0/7 (0)</td>
<td>0/8 (0)</td>
<td></td>
</tr>
<tr>
<td>F4+ E. coli</td>
<td>Colon, ileum</td>
<td>Culture, agglutination</td>
<td>0/18 (0)</td>
<td>0/7* (0)</td>
<td>0/8 (0)</td>
<td></td>
</tr>
<tr>
<td>Brachyspira spp.</td>
<td>Colon</td>
<td>PCR</td>
<td>0/12 (0)</td>
<td>0/3* (0)</td>
<td>NT**</td>
<td></td>
</tr>
<tr>
<td>Campylobacter spp.</td>
<td>Stomach</td>
<td>PCR</td>
<td>0/3* (0)</td>
<td>NT</td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td>Helicobacter spp.</td>
<td>Stomach</td>
<td>PCR</td>
<td>0/3* (0)</td>
<td>NT</td>
<td>NT</td>
<td></td>
</tr>
</tbody>
</table>

* When the denominators are smaller than the total numbers in that group, the remaining samples were not tested.
** NT = Not tested.

PFTS - Testing for bacterial pathogens

<table>
<thead>
<tr>
<th>Pathogens</th>
<th>Sample</th>
<th>Assays</th>
<th># positive/# tested (positive%)</th>
<th>Sick</th>
<th>Healthy</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathogenic E. coli</td>
<td>Colon, ileum</td>
<td>PCR</td>
<td>8/12* (66.7)</td>
<td>2/3* (66.7)</td>
<td>4/7* (57.1)</td>
<td></td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>Colon, ileum</td>
<td>Culture</td>
<td>4/18 (22.2)</td>
<td>2/7 (28.6)</td>
<td>0/8 (0)</td>
<td></td>
</tr>
</tbody>
</table>

* When the denominators are smaller than the total numbers in that group, the remaining samples were not tested.
PFTS - Interpretation of bacterial testing

- *Clostridium perfringens* type A
 - Present in both sick and healthy pigs
- *E. coli*
 - Present in both sick and healthy pigs

PFTS - Testing for viral pathogens

<table>
<thead>
<tr>
<th>Pathogens</th>
<th>Samples Assays</th>
<th>Assays</th>
<th># positive/# tested (positive %)</th>
<th>Sick</th>
<th>Healthy</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRRSV</td>
<td>Lung</td>
<td>PCR</td>
<td>0/18 (0)</td>
<td>0/7 (0)</td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td>SIV</td>
<td>Lung</td>
<td>PCR</td>
<td>0/18 (0)</td>
<td>0/7 (0)</td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td>TGEV</td>
<td>GI</td>
<td>IHC</td>
<td>0/18 (0)</td>
<td>0/7 (0)</td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td>PCV2</td>
<td>Lymphoid GI</td>
<td>IHC</td>
<td>0/18 (33.3)</td>
<td>0/7 (0)</td>
<td>NT</td>
<td></td>
</tr>
</tbody>
</table>

Pathogens Samples Assays # positive/# tested (positive %) Sick Healthy Control
Enteric calicivirus Jejunum PCR 4/18 (22.2) 1/7 (14.3) 1/8 (12.5)
Cytomegalovirus Tonsil, lung, kidney, GI PCR 17/18 (94.4) 7/7 (100) 8/8 (100)
Rotavirus A GI IHC 4/18 (22.2) 0/7 (0) NT
HEV Tonsil PCR 6/18 (33.3) 0/7 (0) 0/8 (0)
HEV Lung, kidney, GI PCR 0/18 (0) 0/7 (0) 0/8 (0)
HEV Brain stem, stomach PCR 0/6 * (0) Not tested Not tested

These 6 medulla oblongata are from the pigs that tested positive for HEV 1 in tonsils.

Slide courtesy: Dr. Y Huang
PFTS - Interpretation of viral testing

- **Rotavirus A** – lack of consistent diarrhea; rotavirus B and C was not investigated at this time
- **Enteric calicivirus** – Causes atrophic enteritis in gnotobiotic neonatal pigs. (Guo, M., et al., 2001)
- **CMV** – Rarely causes severe disease. No histological evidence of systemic infection.
- **HEV** – Clinical signs not typical (Vomiting and wasting disease); only positive in tonsil; gastric ganglionitis/periganglionitis?

PFTS - Testing for parasitic pathogens

<table>
<thead>
<tr>
<th>Pathogens</th>
<th>Samples</th>
<th>Assays</th>
<th># positive/# tested (positive%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sick</td>
</tr>
<tr>
<td>Coccidia</td>
<td>Feces</td>
<td>Flotation</td>
<td>3/5* (60)</td>
</tr>
<tr>
<td>Coccidia</td>
<td>Jejunum and/or ileum</td>
<td>Histology</td>
<td>6/18 (33.3)</td>
</tr>
</tbody>
</table>

* Not tested in 13 sick pigs (feces not available) and 4 healthy pigs
** These pigs are different from those necropsied control pigs

No other parasitic oocysts found

PFTS - Interpretation of parasitic testing

- **Coccidia** – *Isospora suis*
 - but need to be confirmed
- **I. suis** – Usually causes diarrhea with high morbidity and moderate mortality, which does not match PFTS
- **I. suis/coccidia**
 - primary or secondary pathogen??
Diagnostics - Conclusions
• PFTS seen in the this farm is NOT caused by
 • Clostridium perfringens A
 • Brachyspira
 • TGEV
 • Rotavirus A
 • PRRS
 • PCV2
 • SIV

Diagnostics - Conclusions
• E. coli, CMV, enteric calicivirus, HEV and coccidia (probably I. suis) are present in the PFTS-affected farm.
• But PFTS doesn’t match the typical clinical presentations of the infections of these pathogens
 as we understand them today....

Diagnostics - Conclusions
• Potential roles of rotavirus, enteric calicivirus and HEV are not fully investigated at this time
 • Rotavirus B and C?
 • Genetic diversity of enteric calicivirus
 • Significance of gastric ganglionitis/ periganglionitis/meningoencephalitis and their association with HEV or other pathogens?
 • Efforts to search for uncommon or novel pathogens is warranted
Terri’s Diagnostic Thoughts

- Anorexia/thymic atrophy
- Chicken or the Egg?
- Anorexia/chomping
- Anorexia/gastritis
- Meningoencephalitis/chomping
- Sick pigs

Prevalence survey and awareness campaign

PFTS - Project Objectives

- Increase awareness of PFTS among swine veterinarians and producers
- Demonstrate clinical signs – video
 - Case definition
- Determine
 - Crude prevalence - Canada and USA
 - Proportion of affected pigs in affected nursery flows
 - Common clinical signs
PFTS - Awareness Campaign
• September – December 2011
• Oral presentations at major swine practitioner meetings in USA and Canada
• Demonstrated clinical signs
 • Instructional video and still photos
• Questionnaire – recruit respondents
• Discussion and collaboration

PFTS - Questionnaire
• Administered September – December 2011
• Questions
 • Open and closed, comment sections
• Beta tested
 • Question clarity, reliability
• Asked to view video prior to completing questionnaire
 • Case definition

PFTS - Questionnaire
• American Association of Swine Veterinarians (AASV)
 • Email list-serve announcements made to AASV membership every 2 weeks
• Alternate online access available for non-AASV members
• Questionnaires available at meetings during awareness campaign
PFTS - Video

- Access via AASV website
 - Anonymous, password protected
 - Number of “hits” unknown
- Video inquiries from outside North America
- Comments regarding video were very positive
 - “The video was very informative and will help me to identify possible PFTS cases in the future”
 - “Excellent initiative. The video is a very good way to raise awareness of the condition and the clinical signs”

Results

- 52 questionnaires completed
 - 30 AASV website
 - 18 attending conferences
 - 4 alternate on-line option
- 88% (46/52) were swine practitioners
 - Academia, diagnosticians, industry, government
- 85% reported that >50% of their practice time was devoted to swine practice

Results

- 1,927 nursery flows
- 12 US States
- 6 Canadian Provinces
- 3 survey respondents were from outside North America
PFTS - Crude Prevalence

- Nursery flow prevalence of PFTS
 - 4.0% (CI 3.3-5.0%)
- PFTS affected flows in
 - 10 States, 4 Provinces
- A nursery flow was defined as:
 - one flow if the source of pigs is from a single sow operation that supplies 1 or more nurseries
 - one flow if the source of pigs is from multiple sow operations supplying 1 or more nurseries

Proportion of nursery pigs reported to be affected with PFTS within affected flows

<table>
<thead>
<tr>
<th>PFTS-affected pigs within an affected flow (%)</th>
<th>Veterinarians reporting (n=24) (%)</th>
<th>95% CI (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>50.0</td>
<td>29.1 - 70.9</td>
</tr>
<tr>
<td>4-10</td>
<td>45.8</td>
<td>25.6 - 67.2</td>
</tr>
<tr>
<td>11-25</td>
<td>4.2</td>
<td>0.12 - 21.1</td>
</tr>
<tr>
<td>26-50</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>>50</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

*Binomial exact

Reported clinical signs associated with PFTS affected pigs

<table>
<thead>
<tr>
<th>Clinical Sign</th>
<th>% of Veterinarians Reporting (n=24)</th>
<th>95% CI (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anorexia</td>
<td>100</td>
<td>85.7 - 100</td>
</tr>
<tr>
<td>Loss of body condition</td>
<td>87.5</td>
<td>67.6 - 97.3</td>
</tr>
<tr>
<td>Prolonged standing</td>
<td>83.3</td>
<td>62.6 - 96.3</td>
</tr>
<tr>
<td>Oral behavior of licking and chomping</td>
<td>75.0</td>
<td>53.2 - 90.2</td>
</tr>
</tbody>
</table>

*Binomial exact
Conclusions - Survey

- First reported estimate of flow-prevalence of PFTS in US and Canadian nurseries
- Small questionnaire sample size
 - > 1900 nursery pig flows
- Convenience sample
- Reasonable to expect that reported prevalence may change as we further understand PFTS

2011 2012 Questions....

Unknown...
- Case definition - dynamic
- Etiology, pathogenesis - dynamic
- Prevalence of PFTS in North America - dynamic
- Prevalence of clinical signs being observed
 - What is the most common clinical sign?
- Proportionate mortality due to PFTS - dynamic
- Economic significance
- On-farm risk factors - unexplored

Future research....

- Diagnostic investigations continue
 - University of Saskatchewan
 - University of Guelph
- Behavioural study – chomping
 - Prevalence in normal pigs
- Metabolic disease studies
 - Vitamin D and others
Take Home Message

PFTS - Considered an emerging/re-emerging disease....

“An emerging disease is one that has appeared in a population for the first time, or that may have existed previously but is increasing in incidence or geographic range”
http://www.who.int/topics/emerging_diseases/en/

Take Home Message

• Pathogenesis and etiology unknown
• Prevalence in Canada and USA = 4.0%
 • Field reports other countries
• On-farm prevalence variable = 1-10%
• High quality video and emerging diseases
• Continued collaboration important!

Acknowledgements

University of Saskatchewan
John Harding
Yanyun Huang

University of Guelph
Bob Friendship
Josepha Delay

Abilene Animal Hospital
Steve Henry

Iowa State University
Kent Schwartz
Darin Madson

Survey and video beta testers
American Association of Swine Veterinarians

Thank you!
Contact Information

Terri O’Sullivan DVM, PhD
University of Saskatchewan
Department of Large Animal Clinical Sciences
Western College of Veterinary Medicine
terri.osullivan@usask.ca

University of Guelph
Department of Population Medicine
Ontario Veterinary College
tosulliv@uoguelph.ca
1-519-824-4120 ext. 54079

References

- Gokce, H. and Huber, M. Why are these names in this paper? Proc. Western Canadian Association of Feline practitioners Conference. Saskatoon, SK, Oct 2-4, 2006.

*peer-reviewed